Intro. to ODEs

Quiz 14 Solutions

1) Find and classify all equilibria for the 2×2 non-linear system below.

$$
\begin{aligned}
& \frac{d x}{d t}=x y-x-4 \\
& \frac{d y}{d t}=x(y-x+2)
\end{aligned}
$$

The easiest nullclines to work with are the ones for y.

$$
\begin{aligned}
& x(y-x+2)=0 \\
& \quad x=0 \text { or } y=x-2
\end{aligned}
$$

If $x=0$, then the x-nullcline gives us $-4=0$ which is nonsense. So, there are no equilibria associated to this case. If $y=x-2$, then the x-nullcline gives

$$
\begin{aligned}
x y-x-4 & =0 \\
x(x-2)-x-4 & =0 \\
x^{2}-3 x-4 & =0 \\
(x-4)(x+1) & =0 \\
x & =-1,4 .
\end{aligned}
$$

This gives us two equilibria: $(-1,-3)$ and $(4,2)$. The linearization matrix is

$$
L(x, y)=\left[\begin{array}{cc}
y-1 & x \\
y-2 x+2 & x
\end{array}\right]
$$

which only has significance in a small neighborhood around each equilibrium.

- For $(-1,-3), \tau=\operatorname{tr}(L(-1,-3))=-5$ while $\Delta=\operatorname{det}(L(-1,-3))=5$. Since $\tau^{2} / 4>\Delta, \Delta>0$, and $\tau<0$, we know that $(-1,-3)$ is an asymptotically stable node.
- For $(4,2), \tau=\operatorname{tr}(L(4,2))=5$ while $\Delta=\operatorname{det}(L(4,2))=20$. Since $\tau^{2} / 4<\Delta$, $\Delta>0$, and $\tau>0$, we know that $(-1,-3)$ is an unstable spiral point.

2) Compute the Laplace Transform of the following function using the definition of the transform. Be sure to rewrite your improper integral in terms of a limit, and specify the range of s values where the transform is defined.

$$
f(t)=e^{-7 t}
$$

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} e^{-7 t} e^{-s t} d t \\
& =\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-(s+7) t} d t \\
& =\lim _{R \rightarrow \infty}-\left.\frac{e^{-(s+7) t}}{s+7}\right|_{0} ^{R} \\
& =\frac{1}{s+7}-\lim _{R \rightarrow \infty} \frac{1}{(s+7) e^{(s+7) t}} \\
& =\frac{1}{s+7} \text { when } s+7>0
\end{aligned}
$$

So, $F(s)=\frac{1}{s+7}$ on the interval $s>-7$.

